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Algorithms and Complexity @ TU Wien

Part of Informatics Faculty @ TU Wien

5 Professors + ≈6 PostDoc + ≈25 PreDoc researchers

Main research areas:
▶ algorithm design & analysis

▶ combinatorial optimization

▶ complexity theory

▶ computational geometry

▶ constraint programming

▶ fixed-parameter algorithms

▶ graph algorithms

▶ graph drawing

▶ heuristic problem solving

▶ machine learning

▶ mathematical programming

▶ SAT solving
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Main Research Interests of G. R.

▶ Combinatorial optimization

▶ Metaheuristics including evolutionary methods
▶ Mathematical programming

▶ incl. mixed-integer linear programming, column generation, branch-and-cut-and-price,
(logic-)based Benders decomposition

▶ Constraint programming

▶ Machine learning

▶ Hybrid approaches incl. matheuristics, learning + classical algorithms for COP

Application areas:

▶ Transport optimization

▶ Scheduling

▶ Network design

▶ Problems in bioinformatics

▶ Cutting and packing
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Selected Ongoing Projects

▶ Solving Roman Domination Problems, Influence Maximization Problems, and Variants
▶ with M. Djukanovic et al., Univ. of Banja Luka, Bosnia and Herzegovina

▶ Dynamic Vehicle Routing Problems with Focus on E-mobility & Learning
▶ with T. Rodemann et al., Honda Research Institute Europe

▶ Cooperative Personnel Scheduling
▶ with S. Limmer et al., Honda Research Institute Europe

▶ Doctoral College Vienna Graduate School on Computational Optimization
▶ with University of Vienna, IST Austria, Vienna University of Economics and Business

▶ Catalyst: International Leaders Fellowship Grant
▶ with Royal Society of New Zealand, Research Trust of Victoria University of Wellington
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Combinatorial Optimization and Learning

▶ AI/machine learning boom also hit the area of combinatorial optimization

▶ This in many different ways
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Figure 1: General scheme: Combining Machine Learning and Metaheuristics.

corresponds to the management policy of warehousing and item assignment.

In Kuo et al. (2016a) a PSO algorithm was applied for item assignation

problem in a synchronized zone order picking system. Finally, in Kuo et al.

(2016b) a clustering method based on metaheuristics was proposed to solve

a client segmentation problem.

A major difficulty in the learning process of a machine learning algorithm

is related to the dimension of the dataset. The inadequate handling of the280

dimension of the dataset has as consequence problems of under or overfit-

ting plus a greater amount of computation necessary for its training. Due

to its nature, feature selection is a combinatorial problem and has been ef-

12

▶ Focus here: utilize learning to better solve combinatorial optimization problems (COPs)
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Some Classical Metaheuristics Involving Learning

Basic idea of learning in (meta-)heuristics not new:

▶ Reactive tabu search

▶ Evolution Strategies

▶ Guided Local Search

▶ Variable Neighborhood Search,
Adaptive Large Neighborhood Search
▶ self-adaptive selection of neighborhood structures/operators

▶ Hyper-heuristics

▶ Ant Colony Optimization
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Reinforcement Learning (RL)
▶ A sub-discipline of machine learning
▶ Environment is usually considered a Markov decision process
▶ Framework:

Environment

Agent

A
ct
io
n

State observed

Reward

Constructing a solution to a COP can be seen as an episode in an environment,
objective value =̂ reward
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Reinforcement Learning (RL) - Classification

(from Mazyavkina et al. (2021))
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Encoding of Problems+States, ML Models

▶ encoding highly problem-specific

▶ variants of (deep) neural networks dominate the used ML models
▶ recurrent neural networks, e.g., LSTMs

▶ pointer networks (Vinyals et al., 2015)

▶ variants of Graph Neural Networks (Scarselli et al., 2008), e.g.,
▶ Structure-to-Vector Network (Dai et al., 2016)
▶ Graph Convolutional Network (Kipf and Welling, 2017)
▶ Graph Isomorphism Network (Xu et al., 2019)
▶ Graph Attention Network (Kool et al., 2019; Joshi et al., 2021)
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Learning to Solve Graph Problems

▶ Dai et al. (2017): S2V-DQN

▶ min vertex cover, max cut, TSP considered

▶ graph embedding network structure2vec used to “featurize” nodes

▶ variant of Q-learning used to obtain a policy for greedily constructing solutions

State Embedding the graph + partial solution Greedy node selection

1st iteration

2nd iteration

Θ

Θ
ΘΘ
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Θ
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best node

Embed 
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Figure 1: Illustration of the proposed framework as applied to an instance of Minimum Vertex Cover. The
middle part illustrates two iterations of the graph embedding, which results in node scores (green bars).

Despite the inherent similarity between problem instances arising in the same domain, classical
algorithms do not systematically exploit this fact. However, in industrial settings, a company may
be willing to invest in upfront, offline computation and learning if such a process can speed up its
real-time decision-making and improve its quality. This motivates the main problem we address:

Problem Statement: Given a graph optimization problem G and a distribution D of problem
instances, can we learn better heuristics that generalize to unseen instances from D?

Recently, there has been some seminal work on using deep architectures to learn heuristics for
combinatorial problems, including the Traveling Salesman Problem [37, 6, 14]. However, the
architectures used in these works are generic, not yet effectively reflecting the combinatorial structure
of graph problems. As we show later, these architectures often require a huge number of instances in
order to learn to generalize to new ones. Furthermore, existing works typically use the policy gradient
for training [6], a method that is not particularly sample-efficient. While the methods in [37, 6] can
be used on graphs with different sizes – a desirable trait – they require manual, ad-hoc input/output
engineering to do so (e.g. padding with zeros).

In this paper, we address the challenge of learning algorithms for graph problems using a unique
combination of reinforcement learning and graph embedding. The learned policy behaves like a
meta-algorithm that incrementally constructs a solution, with the action being determined by a graph
embedding network over the current state of the solution. More specifically, our proposed solution
framework is different from previous work in the following aspects:

1. Algorithm design pattern. We will adopt a greedy meta-algorithm design, whereby a feasible
solution is constructed by successive addition of nodes based on the graph structure, and is maintained
so as to satisfy the problem’s graph constraints. Greedy algorithms are a popular pattern for designing
approximation and heuristic algorithms for graph problems. As such, the same high-level design can
be seamlessly used for different graph optimization problems.

2. Algorithm representation. We will use a graph embedding network, called structure2vec
(S2V) [9], to represent the policy in the greedy algorithm. This novel deep learning architecture
over the instance graph “featurizes” the nodes in the graph, capturing the properties of a node in the
context of its graph neighborhood. This allows the policy to discriminate among nodes based on
their usefulness, and generalizes to problem instances of different sizes. This contrasts with recent
approaches [37, 6] that adopt a graph-agnostic sequence-to-sequence mapping that does not fully
exploit graph structure.

3. Algorithm training. We will use fitted Q-learning to learn a greedy policy that is parametrized
by the graph embedding network. The framework is set up in such a way that the policy will aim
to optimize the objective function of the original problem instance directly. The main advantage of
this approach is that it can deal with delayed rewards, which here represent the remaining increase in
objective function value obtained by the greedy algorithm, in a data-efficient way; in each step of the
greedy algorithm, the graph embeddings are updated according to the partial solution to reflect new
knowledge of the benefit of each node to the final objective value. In contrast, the policy gradient
approach of [6] updates the model parameters only once w.r.t. the whole solution (e.g. the tour in
TSP).

2
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Learning to Solve Graph Problems (cont.)
▶ Kool et al. (2019)
▶ Autoregressive multi-head attention-based encoder/decoder GNN
▶ for TSP, VRP

▶ Trained with REINFORCE
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Learning to Solve Graph Problems (cont.)
▶ Li et al. (2018)

▶ max independent set, min vertex cover, max clique, SAT considered

▶ Graph Convolutional Network (GCN) used to predict likelihood of each node to be part
of a solution

▶ GCN yields multiple probability maps to account for the fact that multiple optimal
solutions may exist

▶ heuristic tree search utilizing multiple maps,
graph reduction, basic local search applied

▶ supervised learning instead of reinforcement learning

▶ results competitive to state-of-the-art solvers reported

GCN

Input Graph

Local
Search

Reduced Graph

…

…

…

Guided Tree Search

Graph 
Reduction

Choose 
the best

…Leaf

Not leaf

Figure 1: Algorithm overview. First, the input graph is reduced to an equivalent smaller graph. Then
it is fed into the graph convolutional network f , which generates multiple probability maps that
encode the likelihood of each vertex being in the optimal solution. The probability maps are used to
iteratively label the vertices until all vertices are labelled. A complete labelling corresponds to a leaf
in the search tree. Internal nodes in the search tree represent incomplete labellings that are generated
along the way. The complete labellings generated by the tree search are refined by rapid local search.
The best result is used as the final output.

Satisfiability (SAT). Consider a Boolean expression that is built from Boolean variables, parentheses,
and the following operators: AND (conjunction), OR (disjunction), and NOT (negation). Here a
Boolean expression is a conjunction of clauses, where a clause is a disjunction of literals. A literal is
a Boolean variable or its negation. The problem is to find a Boolean labeling of all variables such that
the given expression is true, or determine that no such label assignment exists.

All these problems can be reduced to each other. In particular, the MVC, MC, and SAT problems can
all be represented as instances of the MIS problem, as reviewed in the supplementary material. Thus,
Section 4 will focus primarily on the MIS problem, although the basic structure of the approach is
more general. The experiments in Section 5 will be conducted on benchmarks and datasets for all
four problems, which will be solved by converting them and solving the equivalent MIS problem.

4 Method
Consider a graph G = (V, E ,A), where V = {vi}Ni=1 is the set of N vertices in G, E is the set of E
edges, and A ∈ {0, 1}N×N is the corresponding unweighted symmetric adjacent matrix. Given G,
our goal is to produce a binary labelling for each vertex in G, such that label 1 indicates that a vertex
is in the independent set and label 0 indicates that it’s not.

A natural approach to this problem is to train a deep network of some form to perform the labelling.
That is, a network f would take the graph G as input, and the output f(G) would be a binary labelling
of the nodes. A natural output representation is a probability map in [0, 1]N that indicates how likely
each vertex is to belong to the MIS. This direct approach did not work well in our experiments. The
problem is that converting the probability map f(G) to a discrete assignment generally yields an
invalid solution. (A set that is not independent.) Instead, we will use a network f within a tree search
procedure.

We begin in Section 4.1 by describing a basic network architecture for f . This network generates
a probability map over the input graph. The network is used in a basic MIS solver that leverages
it within a greedy procedure. Then, in Section 4.2 we modify the architecture and training of
f to synthesize multiple diverse probability maps, and leverage this within a more powerful tree
search procedure. Finally, Section 4.3 describes two ideas adopted from classic heuristics that are
complementary to the application of learning and are useful in accelerating computation and refining
candidate solutions. The overall algorithm is illustrated in Figure 1.

4.1 Initial approach
We begin by describing a basic approach that introduces the overall network architecture and leads to
a basic MIS solver. This will be extended into a more powerful solver in Section 4.2.

Let D = {(Gi, li)} be a training set, where Gi is a graph as defined above and li ∈ {0, 1}N×1 is
one of the optimal solutions for the NP-hard graph problem. li is a binary map that specifies which
vertices are included in the solution. The network f(Gi;θ) is parameterized by θ and is trained to
predict li given Gi.
We use a graph convolutional network (GCN) architecture [12, 24]. This architecture can perform
dense prediction over a graph with pairwise edges. (See [7, 14] for overviews of related architectures.)

3
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Basic Idea of AlphaGoZero (?)

▶ Superhuman agent for Go, successor of AlphaGo

▶ Learns only by iterated selfplay:

Article RESEARCH
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repeatedly in a policy iteration procedure22,23: the neural network’s 
parameters are updated to make the move probabilities and value (p, 
v) =​ fθ(s) more closely match the improved search probabilities and self-
play winner (π, z); these new parameters are used in the next iteration 
of self-play to make the search even stronger. Figure 1 illustrates the 
self-play training pipeline.

The MCTS uses the neural network fθ to guide its simulations (see 
Fig. 2). Each edge (s, a) in the search tree stores a prior probability 
 P(s, a), a visit count N(s, a), and an action value Q(s, a). Each simulation 
starts from the root state and iteratively selects moves that maximize  

an upper confidence bound Q(s, a) +​ U(s, a), where U(s, a) ∝​ P(s, a) /  
(1 +​ N(s, a)) (refs 12, 24), until a leaf node s′ is encountered. This leaf 
position is expanded and evaluated only once by the network to gene­
rate both prior probabilities and evaluation, (P(s′​, ·),V(s′​)) =​ fθ(s′​).  
Each edge (s, a) traversed in the simulation is updated to increment its 
visit count N(s, a), and to update its action value to the mean evaluation  
over these simulations, = / ∑ ′| →′ ′Q s a N s a V s( , ) 1 ( , ) ( )s s a s,  where  
s, a→​s′ indicates that a simulation eventually reached s′​ after taking 
move a from position s.

MCTS may be viewed as a self-play algorithm that, given neural 
network parameters θ and a root position s, computes a vector of search 
probabilities recommending moves to play, π =​ αθ(s), proportional to 
the exponentiated visit count for each move, πa ∝​ N(s, a)1/τ, where τ is 
a temperature parameter.

The neural network is trained by a self-play reinforcement learning 
algorithm that uses MCTS to play each move. First, the neural network 
is initialized to random weights θ0. At each subsequent iteration i ≥​ 1, 
games of self-play are generated (Fig. 1a). At each time-step t, an MCTS 
search π α= θ − s( )t ti 1  is executed using the previous iteration of neural 
network θ −f

i 1
 and a move is played by sampling the search probabilities 

πt. A game terminates at step T when both players pass, when the 
search value drops below a resignation threshold or when the game 
exceeds a maximum length; the game is then scored to give a final 
reward of rT ∈​ {−​1,+​1} (see Methods for details). The data for each 
time-step t is stored as (st, πt, zt), where zt =​ ±​rT is the game winner 
from the perspective of the current player at step t. In parallel (Fig. 1b), 
new network parameters θi are trained from data (s, π, z) sampled 
uniformly among all time-steps of the last iteration(s) of self-play. The 
neural network = θp v f s( , ) ( )

i
 is adjusted to minimize the error between 

the predicted value v and the self-play winner z, and to maximize the 
similarity of the neural network move probabilities p to the search 
probabilities π. Specifically, the parameters θ are adjusted by gradient 
descent on a loss function l that sums over the mean-squared error and 
cross-entropy losses, respectively:

π θ= = − − +θp pv f s l z v c( , ) ( ) and ( ) log (1)2 T 2

where c is a parameter controlling the level of L2 weight regularization 
(to prevent overfitting).

Empirical analysis of AlphaGo Zero training
We applied our reinforcement learning pipeline to train our program 
AlphaGo Zero. Training started from completely random behaviour and 
continued without human intervention for approximately three days.

Over the course of training, 4.9 million games of self-play were gen­
erated, using 1,600 simulations for each MCTS, which corresponds to 
approximately 0.4 s thinking time per move. Parameters were updated 
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Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The 
program plays a game s1, ..., sT against itself. In each position st, an MCTS 
αθ is executed (see Fig. 2) using the latest neural network fθ. Moves are 
selected according to the search probabilities computed by the MCTS, 
at ∼​ πt. The terminal position sT is scored according to the rules of the 
game to compute the game winner z. b, Neural network training in 
AlphaGo Zero. The neural network takes the raw board position st as its 
input, passes it through many convolutional layers with parameters θ, 
and outputs both a vector pt, representing a probability distribution over 
moves, and a scalar value vt, representing the probability of the current 
player winning in position st. The neural network parameters θ are 
updated to maximize the similarity of the policy vector pt to the search 
probabilities πt, and to minimize the error between the predicted winner vt 
and the game winner z (see equation (1)). The new parameters are used in 
the next iteration of self-play as in a.
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Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the 
tree by selecting the edge with maximum action value Q, plus an upper 
confidence bound U that depends on a stored prior probability P and 
visit count N for that edge (which is incremented once traversed). b, The 
leaf node is expanded and the associated position s is evaluated by the 
neural network (P(s, ·),V(s)) =​ fθ(s); the vector of P values are stored in 

the outgoing edges from s. c, Action value Q is updated to track the mean 
of all evaluations V in the subtree below that action. d, Once the search is 
complete, search probabilities π are returned, proportional to N1/τ, where 
N is the visit count of each move from the root state and τ is a parameter 
controlling temperature.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

▶ Monte Carlo Tree Search (MCTS) is applied to obtain a policy and select a move
▶ In the MCTS new states are evaluated by a deep neural net:

▶ input: board state
▶ output: policy, i.e., probabilities for all positions; value, i.e., probability to win

▶ Neural net output is boosted by MCTS!
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Basic Idea of AlphaZero (Silver et al., 2018)

Article RESEARCH
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repeatedly in a policy iteration procedure22,23: the neural network’s 
parameters are updated to make the move probabilities and value (p, 
v) =​ fθ(s) more closely match the improved search probabilities and self-
play winner (π, z); these new parameters are used in the next iteration 
of self-play to make the search even stronger. Figure 1 illustrates the 
self-play training pipeline.

The MCTS uses the neural network fθ to guide its simulations (see 
Fig. 2). Each edge (s, a) in the search tree stores a prior probability 
 P(s, a), a visit count N(s, a), and an action value Q(s, a). Each simulation 
starts from the root state and iteratively selects moves that maximize  

an upper confidence bound Q(s, a) +​ U(s, a), where U(s, a) ∝​ P(s, a) /  
(1 +​ N(s, a)) (refs 12, 24), until a leaf node s′ is encountered. This leaf 
position is expanded and evaluated only once by the network to gene­
rate both prior probabilities and evaluation, (P(s′​, ·),V(s′​)) =​ fθ(s′​).  
Each edge (s, a) traversed in the simulation is updated to increment its 
visit count N(s, a), and to update its action value to the mean evaluation  
over these simulations, = / ∑ ′| →′ ′Q s a N s a V s( , ) 1 ( , ) ( )s s a s,  where  
s, a→​s′ indicates that a simulation eventually reached s′​ after taking 
move a from position s.

MCTS may be viewed as a self-play algorithm that, given neural 
network parameters θ and a root position s, computes a vector of search 
probabilities recommending moves to play, π =​ αθ(s), proportional to 
the exponentiated visit count for each move, πa ∝​ N(s, a)1/τ, where τ is 
a temperature parameter.

The neural network is trained by a self-play reinforcement learning 
algorithm that uses MCTS to play each move. First, the neural network 
is initialized to random weights θ0. At each subsequent iteration i ≥​ 1, 
games of self-play are generated (Fig. 1a). At each time-step t, an MCTS 
search π α= θ − s( )t ti 1  is executed using the previous iteration of neural 
network θ −f

i 1
 and a move is played by sampling the search probabilities 

πt. A game terminates at step T when both players pass, when the 
search value drops below a resignation threshold or when the game 
exceeds a maximum length; the game is then scored to give a final 
reward of rT ∈​ {−​1,+​1} (see Methods for details). The data for each 
time-step t is stored as (st, πt, zt), where zt =​ ±​rT is the game winner 
from the perspective of the current player at step t. In parallel (Fig. 1b), 
new network parameters θi are trained from data (s, π, z) sampled 
uniformly among all time-steps of the last iteration(s) of self-play. The 
neural network = θp v f s( , ) ( )

i
 is adjusted to minimize the error between 

the predicted value v and the self-play winner z, and to maximize the 
similarity of the neural network move probabilities p to the search 
probabilities π. Specifically, the parameters θ are adjusted by gradient 
descent on a loss function l that sums over the mean-squared error and 
cross-entropy losses, respectively:

π θ= = − − +θp pv f s l z v c( , ) ( ) and ( ) log (1)2 T 2

where c is a parameter controlling the level of L2 weight regularization 
(to prevent overfitting).

Empirical analysis of AlphaGo Zero training
We applied our reinforcement learning pipeline to train our program 
AlphaGo Zero. Training started from completely random behaviour and 
continued without human intervention for approximately three days.

Over the course of training, 4.9 million games of self-play were gen­
erated, using 1,600 simulations for each MCTS, which corresponds to 
approximately 0.4 s thinking time per move. Parameters were updated 
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Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The 
program plays a game s1, ..., sT against itself. In each position st, an MCTS 
αθ is executed (see Fig. 2) using the latest neural network fθ. Moves are 
selected according to the search probabilities computed by the MCTS, 
at ∼​ πt. The terminal position sT is scored according to the rules of the 
game to compute the game winner z. b, Neural network training in 
AlphaGo Zero. The neural network takes the raw board position st as its 
input, passes it through many convolutional layers with parameters θ, 
and outputs both a vector pt, representing a probability distribution over 
moves, and a scalar value vt, representing the probability of the current 
player winning in position st. The neural network parameters θ are 
updated to maximize the similarity of the policy vector pt to the search 
probabilities πt, and to minimize the error between the predicted winner vt 
and the game winner z (see equation (1)). The new parameters are used in 
the next iteration of self-play as in a.
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Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the 
tree by selecting the edge with maximum action value Q, plus an upper 
confidence bound U that depends on a stored prior probability P and 
visit count N for that edge (which is incremented once traversed). b, The 
leaf node is expanded and the associated position s is evaluated by the 
neural network (P(s, ·),V(s)) =​ fθ(s); the vector of P values are stored in 

the outgoing edges from s. c, Action value Q is updated to track the mean 
of all evaluations V in the subtree below that action. d, Once the search is 
complete, search probabilities π are returned, proportional to N1/τ, where 
N is the visit count of each move from the root state and τ is a parameter 
controlling temperature.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

▶ selfplay games are logged with results in a replay buffer

▶ neural net continuously trained with samples from replay buffer
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Learning to Solve Graph Problems

▶ Abe et al. (2020): CombOptZero

▶ min vertex cover, max cut, max clique problems considered

▶ based on the principles of AlphaGoZero

▶ different graph neural networks tested, including GCN

▶ special reward normalization applied

▶ outperforms S2V-DQN, results close to state-of-the-art reported

▶ Huang et al. (2019): similar approach for coloring large graphs with millions of nodes

▶ special FastColorNet neural network architecture

▶ claimed to yield new state-of-the-art results
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Learning Beam Search (Huber and Raidl, 2021)
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Longest Common Subsequence Problem

Given: set of m input strings S = {s1, . . . , sm} over alphabet Σ.

▶ Longest Common Subsequence (LCS): find a longest string that appears as
subsequence in any string of S.

Example: m = 2, |Σ| = 3

s1: ABBA ⇒ ABA.
s2: CABA

State-of-the-art: BS with theoretically derived guidance functions EX
(Djukanovic et al., 2020)
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LBS Experiments: Approximation of Real LCS Length

The learned network of LBS approximates the real expected LCS lengths better than EX:
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LBS Experiments: Results

Results on rat and BB LCS benchmark instances:

▶ NN: MLP with 20+20 hidden nodes

▶ Features: remaining input string lengths, remaining min. letter occurrences
▶ Beam width:

– LBS training done with β = 50
– Low computation time tests with β = 50
– High quality tests with β = 600

LBS achieved new best results in

▶ low time experiments: 13 out of 28

▶ high quality experiments: 7 out of 28

and matched most others.

Also successfully considered:
Constrained LCS, shortest common supersequence problem, no-wait flow shop problem
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The Electric Autonomous Dial-a-Ride Problem (EADARP)
(Bongiovanni et al., 2019)

Given: n users with transportation requests from a pickup to a drop-off location,
a fleet of m electric autonomous vehicles

Task: Design m vehicle routes serving all requests, s.t. the total travel time and
the excess ride times of all users are minimized and certain constraints are satisfied.
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Large Neighborhood Search for EADARP

(Bresich et al., 2024; GECCO 2024)

▶ Key-feature: an efficient algorithm to insert charging station visits into routes on-the-fly

▶ Leading for benchmark instances from literature with up to 100 users, 8 vehicles

▶ Limmer (2023): Simpler and faster LNS also applicable to instances with
few hundred vehicles, several thousand users

▶ Our LNS only achieves few iterations within time-limit, gaps 10–30%

▶ How to scale up our LNS?
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Large Neighborhood Search for EADARP

(Bresich et al., 2024; GECCO 2024)

▶ Key-feature: an efficient algorithm to insert charging station visits into routes on-the-fly

▶ Leading for benchmark instances from literature with up to 100 users, 8 vehicles

However:

▶ Limmer (2023): Simpler and faster LNS also applicable to instances with
few hundred vehicles, several thousand users

▶ Our LNS only achieves few iterations within time-limit, gaps 10–30%

▶ How to scale up our LNS?
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Sparsening/Clustering Techniques for EADARP

Sparsening to k-nearest neighbor graph or
clustering into separate geographical regions:

Does not work at all. – Why?
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Sparsening/Clustering Techniques for EADARP

Sparsening to k-nearest neighbor graph or
clustering into separate geographical regions:

Does not work at all. – Why?

Each order has

▶ a pickup location

▶ a dropoff location

▶ a time window

and orders need to be combined to tours;
moreover charging not considered
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Learning Heatmaps

▶ Learn model indicating likelihood for
▶ pairs of orders to be served successively in same tour
▶ in (close to) optimal solutions.

▶ Trained model on medium-sized instances and solutions obtained by the LNS

▶ Diverse classical ML models as well as small neural networks considered;
reasonable results obtained

▶ More substantial improvements achieved with graph neural networks
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Potential Issue of Heatmaps: Unimodality

Example: Maximum independent set problem on K3,3 has two optimal solutions:

1

2

3

4

5

6

1

2

3

4

5

6

Heatmap: all nodes are equally likely in an optimal solution.

→ no meaningful information

More generally, symmetries and very different (close to) optimal solutions may cause
problems.
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Learning Effective Destroy Sets in LNS

▶ Decomposition-based learning LNS
(Song et al., 2020)

▶ Neural LNS
(Addanki et al., 2020)

▶ Neural Neighborhood Selection (NNS)
(Sonnerat et al., 2021)

▶ Learning Large Neighborhood Search for Staff Rerostering
(Oberweger et al., 2022)
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Staff Rerostering Problem (SRRP)
▶ Given: old schedule, disruptions, demand to be met
▶ Goal: create new schedule

▶ meeting new demand as best as possible (soft)
▶ having as few changes to old schedule as possible (soft)
▶ meeting all hard constraints, e.g., work regulations

d1 d2 d3 d4 d5 d6 d7

n1

n2

n3

n4

n5

N N N N

N N N

F F

F F

E E E

D

FFDD

DDDDDF D

E E E F F E E

DD

min./max. consec.
working shifts

shift type

exactly one shift
per day

minimum rest of
eleven hours

min./max. total
assignments to
working shifts

min./max. total
assignments per
shift type

no working shift
if absent

min./max. consec.
assignments per

Figure: Overview of hard constraints.
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Learning LNS for SRRP

▶ Initial solution from a simple construction heuristic

▶ Destroy: Unassign some variables → partial solution

unassign

temperature τ

destroy set
sampling

destroy set

probability for each employee-

d1 d2 d3

n1
n2
n3

day pairs to be destroyed

repair
solution

d1 d2 d3

n1
n2
n3

d1 d2 d3

n1
n2
n3

evaluate, update incumbent, and repeat

d1 d2 d3

n1
n2
n3

create
solutionE

E
E E

E
E EE

F F

F
F

F
F

F
FD

D
D D

D
D D D

N N N N N N N N N

incumbent sol.problem instance partial solution new solution

▶ Repair: Mixed Integer Linear Programming (MILP) solver applied

▶ Training: Supervised, optimal destroy sets from MILP model with local branching
constraint
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Learning-Based Destroy Operator

▶ Model current solution as a graph in each state of LNS

▶ Use Graph Neural Network (GNN)

▶ Predict probability of each employee-day pair to belong to destroy set yielding highest
improvement

▶ Select with randomized sampling procedure enforcing selection of segments

N1 N2 N3

(N1, D1) (N2, D1) (N3, D1) (N1, D2) (N2, D2) (N3, D2) (N1, D3) (N2, D3) (N3, D3)

D1 D2 D3
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Learning-Based Destroy Operator
Training

▶ Offline with representative problem instances via imitation learning

▶ Expert policy:
MILP with local branching constraint to determine optimal destroy set
(very slow)

▶ Loss function: log-likelihood of expert actions, cross-entropy for temperature

▶ DAGGER (Ross et al., 2011):
Trajectories are first created with expert strategy,
later with learned model
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Computational Results
▶ Model trained with |N | = 110 employees
▶ MILP + Gurobi optimality gap between 26% and 34%

120 130 140 150
|N|
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101
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]
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Figure: Comparison of LNS RND and LNS NN optimality gaps. 15 minutes running time. Lower
bounds from solving MILP for three hours.
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Potential Issue of Learning-Based Destroy

▶ Multimodality:
Often there are multiple (close to) optimal destroy sets.

▶ Learning just with single best destroy set per training sample can be misleading.

▶ Aggregating multiple (close to) optimal destroy sets can be beneficial.
However: Obtained probability distributions often less informative

▶ Carefully designed problem-specific sampling procedure important!
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Potential Issue of Learning-Based Destroy

▶ Multimodality:
Often there are multiple (close to) optimal destroy sets.

▶ Learning just with single best destroy set per training sample can be misleading.

▶ Aggregating multiple (close to) optimal destroy sets can be beneficial.
However: Obtained probability distributions often less informative

▶ Carefully designed problem-specific sampling procedure important!
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Denoising Diffusion Models (DDMs)

▶ State-of-the-art in many generative AI applications,
in particular the creation of realistically-looking images

▶ Training
▶ Gaussian noise step-wise added to original images
▶ Neural network trained to predict noise added in each step

▶ Inference
▶ Starts from pure random noise
▶ Stepwise remove noise via neural network

▶ DDMs can be conditioned on additional input

▶ Concept can also be applied to graph neural networks!
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DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(Sun and Yang, 2023)

▶ TSP and maximum independent set problem considered

▶ utilizes an anisotropic graph neural network with edge gating

▶ discrete diffusion based on Bernoulli noise

▶ trained on many small instances + (close to) optimal solutions

▶ used to create diverse heatmaps

▶ greedy heuristics and MCTS used as decoder
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DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(Sun and Yang, 2023)

▶ TSP and maximum independent set problem considered

▶ utilizes an anisotropic graph neural network with edge gating

▶ discrete diffusion based on Bernoulli noise

▶ trained on many small instances + (close to) optimal solutions

▶ used to create diverse heatmaps

▶ greedy heuristics and MCTS used as decoder

▶ Advantages
▶ outperforms earlier approaches by a large margin in their tests
▶ faster than autoregressive models
▶ better scaling behavior to larger instances
▶ multi-modality of solution space is considered
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DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(from Sun and Yang (2023))
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DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(from Sun and Yang (2023))
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Our Ongoing Work

We are currently investigating DDM & GNN-based approaches for EADARP

▶ to determine destroy sets in LNS

▶ to restrict candidate routes for order insertions

▶ to restrict candidate positions for order insertions

▶ to dynamically decompose problem instances

Related DDM & GNN-based methods are also investigated on

▶ α-domination problem

▶ maximum influence problems in graphs

▶ graph burning problem

(Very) early results promising!
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Conclusions

▶ Manifold strategies to improve classical solving approaches for COPs by ML

▶ End-to-end ML approaches will not soon replace classical CO techniques in general

▶ ML can help substantially to
▶ guide tree search or heuristic search
▶ sparsify search spaces
▶ find better problem decompositions
▶ better focus search operators

▶ Graph & DDM-based approaches appear particularly promising!(?)
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Features for Learning-Based Destroy Operator

For each assignment (n, d)

▶ flag indicating whether employee n is assigned to shift s ∈ S on day d

▶ flag indicating whether employee n is assigned to shift s ∈ S on day d in the original roster

▶ flag indicating whether employee n is absent on shift s ∈ S on day d

▶ flag indicating whether the minimum number of consecutive working days constraint is violated for employee n
on day d

▶ flag indicating whether the maximum number of consecutive working days constraint is violated for employee n
on day d

▶ flag indicating whether the minimum number of consecutive assignment constraint is violated for employee n on
day d and shift s ∈ S

▶ flag indicating whether the maximum number of consecutive assignment constraint is violated for employee n on
day d and shift s ∈ S
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Features for Learning-Based Destroy Operator

For each employee n

▶ total number of working assignments of employee n

▶ total number of working assignments of employee n minus minimum number of working days in the planning
horizon (αmin)

▶ maximum number of working days in the planning horizon (αmax) minus total number of working assignments
of employee n

▶ total number of assignments to shift s ∈ S of employee n

▶ total number of assignments to shift s ∈ S of employee n minus minimum allowed number of assignments to
this shift s (γmin

s )

▶ maximum allowed number of assignments to shift s ∈ S (γmax
s ) minus total number of assignments to this shift

s of employee n

▶ total number of whole day absences of employee n

▶ total number of absences per shift s ∈ S of employee n

For each Day d

▶ total number of assignments to each shift s ∈ S on day d

▶ total number of assignments to each shift s ∈ S on day d minus cover requirements for this shift s on day d
(Rc

ds)
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