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algorithm design & analysis
combinatorial optimization
complexity theory
computational geometry

constraint programming

fixed-parameter algorithms
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graph algorithms

graph drawing

heuristic problem solving
machine learning
mathematical programming
SAT solving
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Research Interests of G. R.

Combinatorial optimization

Metaheuristics including evolutionary methods
Mathematical programming

P incl. mixed-integer linear programming, column generation, branch-and-cut-and-price,
(logic-)based Benders decomposition

Constraint programming
Machine learning

Hybrid approaches incl. matheuristics, learning + classical algorithms for COP

Application areas:
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Transport optimization
Scheduling

Network design

Problems in bioinformatics

Cutting and packing
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Selected Ongoing Projects ac'l

» Solving Roman Domination Problems, Influence Maximization Problems, and Variants
> with M. Djukanovic et al., Univ. of Banja Luka, Bosnia and Herzegovina

» Dynamic Vehicle Routing Problems with Focus on E-mobility & Learning
» with T. Rodemann et al., Honda Research Institute Europe

» Cooperative Personnel Scheduling
» with S. Limmer et al., Honda Research Institute Europe

» Doctoral College Vienna Graduate School on Computational Optimization
» with University of Vienna, IST Austria, Vienna University of Economics and Business

» Catalyst: International Leaders Fellowship Grant
» with Royal Society of New Zealand, Research Trust of Victoria University of Wellington



Combinatorial Optimization and Learning acllt

» Al/machine learning boom also hit the area of combinatorial optimization

» This in many different ways

» Focus here: utilize learning to better solve combinatorial optimization problems (COPs)



Some Classical Metaheuristics Involving Learning ac!lt

Basic idea of learning in (meta-)heuristics not new:

» Reactive tabu search
» Evolution Strategies
» Guided Local Search
» Variable Neighborhood Search,
Adaptive Large Neighborhood Search
> self-adaptive selection of neighborhood structures/operators

» Hyper-heuristics

» Ant Colony Optimization



Reinforcement Learning (RL) ac!lt

» A sub-discipline of machine learning
» Environment is usually considered a Markov decision process

%\ pivot point

Environment

» Framework:

Re Wary

Action

State observed

(00
4/

Agent

Constructing a solution to a COP can be seen as an episode in an environment,

objective value = reward



Reinforcement Learning (RL) - Classification acil

Model-free Model-based

( Value-based ) Policy-based
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(from Mazyavkina et al. (2021))




Encoding of Problems+States, ML Models ac!ln

» encoding highly problem-specific

» variants of (deep) neural networks dominate the used ML models

» recurrent neural networks, e.g., LSTMs

> pointer networks (Vinyals et al., 2015)
> variants of Graph Neural Networks (Scarselli et al., 2008), e.g.,

» Structure-to-Vector Network (Dai et al., 2016)

» Graph Convolutional Network (Kipf and Welling, 2017)

» Graph Isomorphism Network (Xu et al., 2019)

> Graph Attention Network (Kool et al., 2019; Joshi et al., 2021)
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Learning to Solve Graph Problems

» Dai et al. (2017): S2V-DQN

» min vertex cover, max cut, TSP considered

ac'l!

» graph embedding network structure2vec used to “featurize” nodes

» variant of Q-learning used to obtain a policy for greedily constructing solutions
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Learning to Solve Graph Problems (cont.)

» Kool et al. (2019)

» Autoregressive multi-head attention-based encoder/decoder GNN

» for TSP, VRP
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Learning to Solve Graph Problems (cont.)

>
>
>

Li et al. (2018)

max independent set, min vertex cover, max clique, SAT considered

ac'l!

Graph Convolutional Network (GCN) used to predict likelihood of each node to be part

of a solution

GCN vyields multiple probability maps to account for the fact that multiple optimal

solutions may exist

heuristic tree search utilizing multiple maps,
graph reduction, basic local search applied

supervised learning instead of reinforcement learning

results competitive to state-of-the-art solvers reported

Not leaf
=]
.
.
] 0o o
.. » Graph » e.
. ° Reduction 4 .
: B : % o O =
Input Graph Reduced Graph - :
GCN Guided Tree Search

Leaf

" |m

Local
Search

1i-11

Choose
the best




Basic Idea of AlphaGoZero (?7)

» Superhuman agent for Go, successor of AlphaGo

» Learns only by iterated selfplay:
Self-play s s, s
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» Monte Carlo Tree Search (MCTS) is applied to obtain a policy and select a move
» In the MCTS new states are evaluated by a deep neural net:

» input: board state

» output: policy, i.e., probabilities for all positions; value, i.e., probability to win

» Neural net output is boosted by MCTS!
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Basic Idea of AlphaZero (Silver et al., 2018)

Neural network training
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» selfplay games are logged with results in a replay buffer

» neural net continuously trained with samples from replay buffer
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Learning to Solve Graph Problems ac'l

Abe et al. (2020): CombOptZero

min vertex cover, max cut, max clique problems considered
based on the principles of AlphaGoZero

different graph neural networks tested, including GCN

special reward normalization applied

vV vV vy vV VY

outperforms S2V-DQN, results close to state-of-the-art reported

v

Huang et al. (2019): similar approach for coloring large graphs with millions of nodes
» special FastColorNet neural network architecture

» claimed to yield new state-of-the-art results



Learning Beam Search (Huber and Raidl, 2021)

Randomly Main BS with beam width
generated (solves problem instance )
problem instance While performing main BS
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Longest Common Subsequence Problem ac!lt

Given: set of m input strings S = {s1,..., S} over alphabet X.

» Longest Common Subsequence (LCS): find a longest string that appears as
subsequence in any string of S.

Example: m =2, |£| =3

s1: ABBA

so: CABA — NBA

State-of-the-art: BS with theoretically derived guidance functions EX
(Djukanovic et al., 2020)



LBS Experiments: Approximation of Real LCS Length ac!lt

The learned network of LBS approximates the real expected LCS lengths better than EX:
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LBS Experiments: Results

Results on rat and BB LCS benchmark instances:

» NN: MLP with 204-20 hidden nodes
» Features: remaining input string lengths, remaining min. letter occurrences

» Beam width:
— LBS training done with 5 = 50

— Low computation time tests with 8 = 50
— High quality tests with 5 = 600
LBS achieved new best results in
» low time experiments: 13 out of 28
» high quality experiments: 7 out of 28

and matched most others.

Also successfully considered:
Constrained LCS, shortest common supersequence problem, no-wait flow shop problem
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The Electric Autonomous Dial-a-Ride Problem (EADARP) i
. . ac
(Bongiovanni et al., 2019)

Given: n users with transportation requests from a pickup to a drop-off location,
a fleet of m electric autonomous vehicles

Task: Design m vehicle routes serving all requests, s.t. the total travel time and
the excess ride times of all users are minimized and certain constraints are satisfied.
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Large Neighborhood Search for EADARP ac!ln

(Bresich et al., 2024; GECCO 2024)
» Key-feature: an efficient algorithm to insert charging station visits into routes on-the-fly

» Leading for benchmark instances from literature with up to 100 users, 8 vehicles



Large Neighborhood Search for EADARP ac!ln

(Bresich et al., 2024; GECCO 2024)
» Key-feature: an efficient algorithm to insert charging station visits into routes on-the-fly
» Leading for benchmark instances from literature with up to 100 users, 8 vehicles
However:

» Limmer (2023): Simpler and faster LNS also applicable to instances with
few hundred vehicles, several thousand users

» Our LNS only achieves few iterations within time-limit, gaps 10-30%

» How to scale up our LNS?



Sparsening/Clustering Techniques for EADARP ac!lt

Sparsening to k-nearest neighbor graph or
clustering into separate geographical regions:

Does not work at all. — Why?



Sparsening/Clustering Techniques for EADARP

Sparsening to k-nearest neighbor graph or
clustering into separate geographical regions:

Does not work at all. — Why?

Each order has
» a pickup location
» a dropoff location
» a time window

and orders need to be combined to tours;
moreover charging not considered
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Learning Heatmaps

» Learn model indicating likelihood for

P pairs of orders to be served successively in same tour
> in (close to) optimal solutions.

o
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i
» Trained model on medium-sized instances and solutions obtained by the LNS

» Diverse classical ML models as well as small neural networks considered;
reasonable results obtained

» More substantial improvements achieved with graph neural networks

acllll



Potential Issue of Heatmaps: Unimodality ac!lv

Example: Maximum independent set problem on K33 has two optimal solutions:

Heatmap: all nodes are equally likely in an optimal solution.
— no meaningful information

More generally, symmetries and very different (close to) optimal solutions may cause
problems.



Learning Effective Destroy Sets in LNS

» Decomposition-based learning LNS
(Song et al., 2020)

» Neural LNS
(Addanki et al., 2020)

» Neural Neighborhood Selection (NNS)
(Sonnerat et al., 2021)

» Learning Large Neighborhood Search for Staff Rerostering
(Oberweger et al., 2022)
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Staff Rerostering Problem (SRRP)

» Given: old schedule, disruptions, demand to be met

» Goal: create new schedule
> meeting new demand as best as possible (soft)
> having as few changes to old schedule as possible (soft)
» meeting all hard constraints, e.g., work regulations

ac'l!
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Figure: Overview of hard constraints.



Learning LNS for SRRP

acllll
» Initial solution from a simple construction heuristic
» Destroy: Unassign some variables — partial solution
probability for each employee-
day pairs to be destroyed
problem instance incumbent sol. partial solution new solution
dy dy d3) create Td, ds dg\ unassign " [dy dy d3) repair Tdy ds dg\
® E D |solution m|F E D destroy set destroy set nm|F E solution m|F E E
E D K nylE D F sampling o D F ne|D D F
N F N nylN F N niN N n3glN N N

temperature 7

evaluate, update incumbent, and repeat

» Repair: Mixed Integer Linear Programming (MILP) solver applied

» Training: Supervised, optimal destroy sets from MILP model with local branching
constraint



Learning-Based Destroy Operator ac'l

» Model current solution as a graph in each state of LNS
» Use Graph Neural Network (GNN)

» Predict probability of each employee-day pair to belong to destroy set yielding highest
improvement

» Select with randomized sampling procedure enforcing selection of segments




Learning-Based Destroy Operator

Training

» Offline with representative problem instances via imitation learning

» Expert policy:
MILP with local branching constraint to determine optimal destroy set
(very slow)

» Loss function: log-likelihood of expert actions, cross-entropy for temperature

» DAGGER (Ross et al., 2011):
Trajectories are first created with expert strategy,
later with learned model
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Computational Results

> Model trained with |N| = 110 employees
» MILP + Gurobi optimality gap between 26% and 34%
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Figure: Comparison of LNS_RND and LNS_NN optimality gaps. 15 minutes running time. Lower
bounds from solving MILP for three hours.



Potential Issue of Learning-Based Destroy

» Multimodality:
Often there are multiple (close to) optimal destroy sets.

» Learning just with single best destroy set per training sample can be misleading.

ac'l!



Potential Issue of Learning-Based Destroy ac!lt

» Multimodality:
Often there are multiple (close to) optimal destroy sets.

» Learning just with single best destroy set per training sample can be misleading.

» Aggregating multiple (close to) optimal destroy sets can be beneficial.
However: Obtained probability distributions often less informative

» Carefully designed problem-specific sampling procedure important!



Denoising Diffusion Models (DDMs)

» State-of-the-art in many generative Al applications,
in particular the creation of realistically-looking images

ac'l!

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

» Training
P Gaussian noise step-wise added to original images
» Neural network trained to predict noise added in each step

» Inference

» Starts from pure random noise
» Stepwise remove noise via neural network

» DDMs can be conditioned on additional input

» Concept can also be applied to graph neural networks!



DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(Sun and Yang, 2023)

>
>
>
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>

TSP and maximum independent set problem considered
utilizes an anisotropic graph neural network with edge gating
discrete diffusion based on Bernoulli noise

trained on many small instances + (close to) optimal solutions
used to create diverse heatmaps

greedy heuristics and MCTS used as decoder
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DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt.

(Sun and Yang, 2023)

>
4
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TSP and maximum independent set problem considered
utilizes an anisotropic graph neural network with edge gating
discrete diffusion based on Bernoulli noise

trained on many small instances + (close to) optimal solutions
used to create diverse heatmaps

greedy heuristics and MCTS used as decoder

Advantages
» outperforms earlier approaches by a large margin in their tests
P faster than autoregressive models
> better scaling behavior to larger instances
» multi-modality of solution space is considered

ac'l!



DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt. ac!lt

Figure 11: Qualitative illustration of discrete DIFUSCO on TSP-50, TSP-100 and TSP-500 with 50 diffusion
steps and cosine schedule.

(from Sun and Yang (2023))



DIFUSCO: Graph-Based Diffusion Solver for Combinatorial Opt. ac!ln

Step 0999/ 10 Step 0999/ 1000

Figure 12: Success (left) and failure (right) examples on TSP-100, where the latter fails to form a single tour that
visits each node exactly once. The results are reported without any post-processing.

(from Sun and Yang (2023))



Our Ongoing Work

We are currently investigating DDM & GNN-based approaches for EADARP
» to determine destroy sets in LNS
> to restrict candidate routes for order insertions
» to restrict candidate positions for order insertions

» to dynamically decompose problem instances

Related DDM & GNN-based methods are also investigated on
» a-domination problem
» maximum influence problems in graphs

» graph burning problem

(Very) early results promising!
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Conclusions ac!lt

» Manifold strategies to improve classical solving approaches for COPs by ML

» End-to-end ML approaches will not soon replace classical CO techniques in general

» ML can help substantially to
P guide tree search or heuristic search
P sparsify search spaces
» find better problem decompositions
» better focus search operators

» Graph & DDM-based approaches appear particularly promising!(?)
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Features for Learning-Based Destroy Operator
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For each assignment (n, d)

vvyyvyy

v

flag indicating whether employee n is assigned to shift s € S on day d
flag indicating whether employee n is assigned to shift s € S on day d in the original roster
flag indicating whether employee n is absent on shift s € S on day d

flag indicating whether the minimum number of consecutive working days constraint is violated for employee n
on day d

flag indicating whether the maximum number of consecutive working days constraint is violated for employee n
on day d

flag indicating whether the minimum number of consecutive assignment constraint is violated for employee n on
day d and shift s € S

flag indicating whether the maximum number of consecutive assignment constraint is violated for employee n on
day d and shift s € S



Features for Learning-Based Destroy Operator

ac'l!

For each employee n

>
>

>
>

total number of working assignments of employee n

total number of working assignments of employee n minus minimum number of working days in the planning
horizon (amin)

maximum number of working days in the planning horizon (amax) minus total number of working assignments
of employee n

total number of assignments to shift s € S of employee n

total number of assignments to shift s € S of employee n minus minimum allowed number of assignments to
this shift s (™)

maximum allowed number of assignments to shift s € S (v*®*) minus total number of assignments to this shift
s of employee n

total number of whole day absences of employee n

total number of absences per shift s € S of employee n

For each Day d

>
>

total number of assignments to each shift s € S on day d

total number of assignments to each shift s € S on day d minus cover requirements for this shift s on day d
(R3s)
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